このページのリンク

Bounded Integral Operators on L 2 Spaces / by Paul Richard Halmos, Viakalathur Shankar Sunder
(Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics ; 96)

データ種別 電子ブック
出版情報 Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer , 1978
本文言語 英語
大きさ XVI, 134 p : online resource

所蔵情報を非表示

URL 電子ブック


EB0096681

書誌詳細を非表示

内容注記 §1. Measure Spaces
Example 1.1. Separable, not ?-finite
Example 1.2. Finite, not separable
§2. Kernels
§ 3. Domains
Example 3.1. Domain 0
Example 3.2. Hilbert transform
Problem 3.3. Closed domain
Example 3.4. Dense domain
Example 3.5. Dense domain
Example 3.6. Non-closed kernel
Example 3.7. Non-closed kernel
Theorem 3.8. Carleman kernels
Lemma 3.9. Dominated subsequences
Theorem 3.10. Full domain
Example 3.11. Everywhere defined kernels
Problem 3.12. Closed domains and kernels
§4. Boundedness
Lemma 4.1. Square integrable kernels
Example 4.2. Dyads
Lemma 4.3. Rank 1
Corollary 4.4. Finite rank
Theorem 4.5. Hilbert-Schmidt operators
Corollary 4.6. Compactness
Corollary 4.7. Singular values
§5. Examples
Example 5.1. Inflated identity
Theorem 5.2. Schur test
Example 5.3. Abel kernel
Example 5.4. Cesàro kernel
Example 5.5. Hilbert-Hankel matrix
Theorem 5.6. Toeplitz matrices
Example 5.7. Hilbert-Toeplitz matrix
Example 5.8. Discrete Fourier transform
§6. Isomorphisms
Theorem 6.1. Induced unitary operators
Theorem 6.2. Transforms of kernels
Corollary 6.3. Unitary equivalence
Corollary 6.4. Preservation of structure
Example 6.5. Projection on L2(II)
Example 6.6. Atomic spaces versus ?
§7. Algebra
Problem 7.1. Multipliability
Example 7.2. Compact Fourier transform
Theorem 7.3. Operators on atomic spaces
Lemma 7.4. Integrable approximation
Theorem 7.5. Conjugate transposes
Corollary 7.6. Atomic domain
Corollary 7.7. Matrices
§8. Uniqueness
Theorem 8.1. Uniqueness
Problem 8.2. Determination
Example 8.3. Non-measurable kernel
Problem 8.4. Measurability
Theorem 8.5. Identity operator
Theorem 8.6. Multiplication operators
§9. Tensors
Theorem 9.1. Direct sums
Corollary 9.2. Carleman kernels
Theorem 9.3. Tensor products
Problem 9.4. Bounded kernels
Theorem 9.5. Tensor multiplicativity of Int
Theorem 9.6. Tensors with dyads
Example 9.7. Isometry on L2(II)
Example 9.8. Inflations as tensor products
Theorem 9.9. Bounded matrices
Corollary 9.10. Schur products
Example 9.11. Schur products with dyads
§10. Absolute Boundedness
Example 10.1. Hilbert-Toeplitz matrix
Example 10.2. Discrete Fourier transform
Example 10.3. Direct sum matrix
Example 10.4. Divisible spaces
Theorem 10.5. Characterization
Corollary 10.6. Adjoints
Theorem 10.7. Products
Theorem 10.8. Non-invertibility
Theorem 10.9. Schur products
Example 10.10. Unbounded Schur products
Remark 10.11. Tensor quotients
§11. Carleman Kernels
Example 11.1. Absolutely bounded, not Carleman
Theorem 11.2. Inclusion relations
Example 11.3. Counterexamples
Theorem 11.4. Strong boundedness
Theorem 11.5. Carleman functions
Theorem 11.6. Right ideal
Corollary 11.7. Non-invertibility
Problem 11.8. Right ideal
Theorem 11.9. Co-boundedness
Theorem 11.10. Hermitian kernels
Theorem 11.11. Normal Carleman adjoints
Problem 11.12. Normal integral adjoints
Example 11.13. Non-Carleman integral adjoint
§12. Compactness
Lemma 12.1. Convolution kernels on L1
Theorem 12.2. Convolution kernels on L2
Corollary 12.3. Compactness
Example 12.4. Non-integral, compact
§13. Compactness
Lemma 13.1. Large characteristic functions
Lemma 13.2. Absolute continuity
Example 13.3. Non-absolute continuity
Lemma 13.4. Hille-Tamarkin kernels
Example 13.5. Non-Hille-Tamarkin kernels
Remark 13.6. Hille-Tamarkin operators
Lemma 13.7. Integrable kernels
Theorem 13.8. compactness
Corollary 13.9. Hilbert-Schmidt approximation
§ 14. Essential Spectrum
Example 14.1. Tensor products and spectra
Theorem 14.2. Atkinson’s theorem
Theorem 14.3. Normal operators
Theorem 14.4. A and A*A
Corollary 14.5. A and AA*
Theorem 14.6. Orthonormal sequences, left
Corollary 14.7. Orthonormal sequences, right
Remark 14.8. Absolute boundedness and invertibility
Remark 14.9. Non-emptiness
Theorem 14.10. Normal Carleman operators
Lemma 14.11. Nearly invariant subspaces
Remark 14.12. Hilbert-Schmidt strengthening
Theorem 14.13. Weyl-von Neumann theorem
Problem 14.14. Normal generalization
Problem 14.15. Quasidiagonal generalization
§15. Characterization
Theorem 15.1. Integral operator, essential spectrum
Remark 15.2. Right versus left -- Corollary 15.3. Unitary transforms -- Lemma 15.4. Matrix inflations -- Remark 15.5. Partially atomic spaces -- Lemma 15.6. Perturbations of Hermitian operators -- Theorem 15.7. Carleman operator, essential spectrum -- Corollary 15.8. Carleman if and only if integral -- Example 15.9. Unilateral shift -- Example 15.10. Non-simultaneity of A and A* -- Theorem 15.11. Simultaneity of A and A* -- Corollary 15.12. Simultaneous integral representability -- Lemma 15.13. Large 0 direct summand -- Theorem 15.14. Simultaneous Carleman representability -- Corollary 15.15. Simultaneous Carleman if and only if integral -- Problem 15.16. Absolutely bounded operators -- Theorem 15.17. Essential non-invertibility of A*A+AA* -- Theorem 15.18. Absolutely bounded operators -- §16. Universality -- Theorem 16.1. Universal integral operators -- Remark 16.2. Universal Carleman operators -- Problem 16.3. Small unitary transforms -- Lemma 16.4. Operator norm -- Theorem 16.5. Universally absolutely bounded matrices -- §17. Recognition -- Remark 17.1. Pointwise domination -- Theorem 17.2. Carleman characterization -- Corollary 17.3. Hilbert-Schmidt characterization -- Problem 17.4. Integral characterization -- Theorem 17.5. Orthonormal Carleman characterization -- Problem 17.6. Orthonormal integral characterization -- Theorem 17.7. Null-sequence Carleman characterization -- Appendix A. Finiteness and Countability Conditions -- Appendix B. Pointwise Unbounded Bounded Kernels -- Theorem B1. Pointwise unbounded subkernels -- Corollary B2. Subrectangles -- Corollary B3. Square integrable kernels -- Problem B4. Unbounded subkernels -- Appendix C. Riemann-Lebesgue Lemma -- Notes -- References
一般注記 The subject. The phrase "integral operator" (like some other mathematically informal phrases, such as "effective procedure" and "geometric construction") is sometimes defined and sometimes not. When it is defined, the definition is likely to vary from author to author. While the definition almost always involves an integral, most of its other features can vary quite considerably. Superimposed limiting operations may enter (such as L2 limits in the theory of Fourier transforms and principal values in the theory of singular integrals), IJ' spaces and abstract Banach spaces may intervene, a scalar may be added (as in the theory of the so-called integral operators of the second kind), or, more generally, a multiplication operator may be added (as in the theory of the so-called integral operators of the third kind). The definition used in this book is the most special of all. According to it an integral operator is the natural "continuous" generali­ zation of the operators induced by matrices, and the only integrals that appear are the familiar Lebesgue-Stieltjes integrals on classical non-pathological mea­ sure spaces. The category. Some of the flavor of the theory can be perceived in finite­ dimensional linear algebra. Matrices are sometimes considered to be an un­ natural and notationally inelegant way of looking at linear transformations. From the point of view of this book that judgement misses something
著者標目 *Halmos, Paul Richard author
Sunder, Viakalathur Shankar author
SpringerLink (Online service)
件 名 LCSH:Mathematics
LCSH:Integral equations
FREE:Mathematics
FREE:Integral Equations
分 類 DC23:515.45
巻冊次 ISBN:9783642670169 REFWLINK
ISBN 9783642670169
URL http://dx.doi.org/10.1007/978-3-642-67016-9
目次/あらすじ

 類似資料